Genetic change and rates of cladogenesis.
نویسندگان
چکیده
Models are introduced which predict ratios of mean levels of genetic divergence in species-rich versus species-poor phylads under two competing assumptions: (1) genetic differentiation is a function of time, unrelated to the number of cladogenetic events and (2) genetic differentiation is proportional to the number of speciation events in the group. The models are simple, general, and biologically real, but not precise. They lead to qualitatively distinct predictions about levels of genetic divergence depending upon the relationship between rates of speciation and amount of genetic change. When genetic distance between species is a function of time, mean genetic distances in speciose and depauperate phylads of equal evolutionary age are very similar. On the contrary, when genetic distance is a function of the number of speciations in the history of a phylad, the ratio of mean genetic distances separating species in speciose versus depauperate phylads is greater than one, and increases rapidly as the frequency of speciations in one group relative to the other increases. The models may be tested with data from natural populations to assess (1) possible correlations between rates of anagenesis and cladogenesis and (2) the amount of genetic differentiation accompanying the speciation process. The data collected in electrophoretic surveys and other kinds of studies can be used to test the predictions of the models. For this purpose genetic distances need to be measured in speciose and depauperate phylads of equal evolutionary age. The limited information presently available agrees better with the model predicting that genetic change is primarily a function of time, and is not correlated with rates of speciation. Further testing of the models is, however, required before firm conclusions can be drawn.
منابع مشابه
Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis.
In historical biogeography, model-based inference methods for reconstructing the evolution of geographic ranges on phylogenetic trees are poorly developed relative to the diversity of analogous methods available for inferring character evolution. We attempt to rectify this deficiency by constructing a dispersal-extinction-cladogenesis (DEC) model for geographic range evolution that specifies in...
متن کاملRevisiting Jablonski (1993): cladogenesis and range expansion explain latitudinal variation in taxonomic richness.
The increase in diversity towards the equator arises from latitudinal variation in rates of cladogenesis, extinction, immigration and/or emigration of taxa. We tested the relative contribution of all four processes to the latitudinal gradient in 26 marine invertebrate orders with extensive fossil records, examined previously by David Jablonski. Coupling Jablonski's estimates of latitudinal vari...
متن کاملHanging Bears from Phylogenetic Trees: Investigating Patterns of Macroevolution
Phylogenetic information of the family Ursidae is well resolved and readily available for investigating macroevolutionary questions. Using complete phylogenies of the ursids and related terrestrial carnivores, I investigate whether patterns of body size and life history evolution in bears differ from other carnivores with respect to cladogenesis, species richness, and overall phyletic trends. L...
متن کاملEcological opportunity and diversification in a continental radiation of birds: climbing adaptations and cladogenesis in the Furnariidae.
Ecological theories of adaptive radiation predict that ecological opportunity stimulates cladogenesis through its effects on competitive release and niche expansion. Given that key innovations may confer ecological opportunity, we investigated the effect of the acquisition of climbing adaptations on rates of cladogenesis in a major avian radiation, the Neotropical bird family Furnariidae, using...
متن کاملTreeSAAP: Selection on Amino Acid Properties using phylogenetic trees
The software program TreeSAAP measures the selective influences on 31 structural and biochemical amino acid properties during cladogenesis, and performs goodness-of-fit and categorical statistical tests.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 81 4 شماره
صفحات -
تاریخ انتشار 1975